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Te’amim	  (singular:	  ta’am)	  

Torah	  can1lla1on	  signs	  (blue):	  

Added	  together	  with	  vowels	  (red)	  by	  masori1c	  rabies	  during	  
sixth	  to	  tenth	  centuries.	  
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Example:	  Song	  of	  Songs	  (Shir	  HaShirim)	  

1 !"# $%& '()* +& ,( -. /0 )+0&1 )( 2" +0& )(

2 !3)0140 )$ 50 ,61# 6 /0)78# 9:01 ); <"01 )= >8# ?0& )(1'@ )$ 0)@ A?&1 4()0

3 !5<7A" -. >8# $4* -B 31 A;:* 2B 5 ,$& '( ? 2+<C 3 ,$& ,( /0 )78# 9 50,@ 4$& '( 2D0 A+ '*

4 "4D '$E '()@'8 "4*0)F4@ 80 4+ 46 -D G,*1 ,$ 2" 0)@H0 )7 I" "4J<+14@ 50 ,+ -DH 0)@ A;& '( 4$
K !5<7A" -. /0 )+& 4(0 A$ 3)0120 )$ 50 ,6# 6 " 4+01 );'L2@ G1 47

5 >8# B0 )+01 ); + 46 A? 0 A* M"N1 '; /4)*& 4(<+'0 >8# @1 '7 "48.4@'8 0)@ -. " 4+8# D& '(
!"# $%& '(

5 

Example:	  Song	  of	  Songs	  (Shir	  HaShirim)	  
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Syntax	  

“Va-‐yomer	  eved	  Avraham	  anokhi”	  
	  “And	  he	  said:	  I	  am	  a	  slave	  of	  Abraham.”	  	  

Other	  Possible	  Meanings	  without	  Te’amim:	  
1)“Abraham’s	  slave	  said,	  ‘It	  is	  I.’”	  
2)“And	  the	  slave	  said:	  I	  am	  Abraham”	  

Disjunc*ve	  Accent	  etnachta	  	  
	  on	  the	  words	  	  	  
	  “va-‐yomer”	  (and	  he	  said)	  

	  Conjunc*ve	  Accent	  merha	  0pha	  	  	  	  	  
	  on	  the	  words	  	  	  
	  “eved	  avraham”	  (slave	  /	  Abraham)	  slave	  of	  Abraham:”	  

Meaning	  of	  Sentence	  with	  Te’amim	  :	  	  
	  “And	  he	  said:	  slave	  of	  Abraham	  [am]	  I.”	  	  

Disjunc1ve	  vs.	  Conjunc1ve	  te’amim	  
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Rendi*on	  

Rendi1on	  determined	  by:	  

•  Text	  posi1on	  
•  Liturgy	  
•  Local	  (oral)	  tradi1ons	  
•  Crea1vity	  of	  the	  performer	  

There	  are	  ethnomusicological	  archives	  with	  large	  amounts	  of	  
recordings	  from	  various	  tradi1ons	  (Europe,	  Indonesia,	  Iran,	  
Jemen,	  Israel,	  …).	  
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Aim	  

Our	  (long-‐term)	  aims	  are	  to:	  

•  inves1gate	  melodic	  stability	  and	  variability	  between	  and	  
within	  various	  reading	  tradi1ons	  

•  test	  hypotheses	  about	  influences	  from	  outside	  Judaism	  (e.g.	  
Hanoch	  Avenary	  (1978):	  Chris1an	  Chant).	  

•  befer	  understand	  the	  rela1onship	  between	  improvisa1on	  and	  
nota1on-‐based	  chant.	  

Current	  study:	  

Compare	  two	  rendi1ons	  of	  the	  same	  text	  (Song	  of	  Songs)	  from	  
Askenazi	  (Hungary)	  and	  Sephardic	  (Morocco)	  tradi1ons.	  
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Computa*onal	  Ethnomusicology	  

Tradi1onal	  approach:	  listening	  and	  manual	  annota1on	  

Recently:	  advances	  in	  computa1onal	  ethnomusicology	  
(see	  e.g.,	  G.	  Tzanetakis,	  A.	  Kapur,	  W.A.	  Schloss,	  and	  M.	  Wright.	  “Computa1onal	  ethnomusicology”.	  Journal	  of	  

interdisciplinary	  music	  studies,	  1(2):1–24,	  2007).	  

Our	  approach:	  

•  Automa1c	  analysis	  of	  audio	  recordings	  

•  Web-‐based,	  interac1ve,	  visualiza1ons	  
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Data	  Set	  

Askenazi	  reading	  (Hungary)	  of	  Shir-‐HaShirim	  (Song	  of	  songs)	  

Sephardic	  reading	  (Morocco)	  of	  Shir-‐HaShirim	  (Song	  of	  songs)	  

Audio	  has	  been	  segmented	  in	  separate	  te’amim	  by	  hand.	  

In	  each	  recording:	  c.	  130	  segments	  (te’amim	  rendi1ons).	  
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Scale	  Deduc*on	  from	  Audio	  
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Can*lla*on	  Interface	  

hfp://can1llion.sness.net/ismir2011	  
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Distance	  Measure	  for	  Segments	  

To	  inves1gate	  stability	  of	  pitch	  contours,	  we	  need	  an	  
appropriate	  distance	  measure	  for	  audio	  segments.	  

We	  have	  the	  contours	  available	  as	  sequences	  of	  pitches.	  
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Sequence	  Alignment	  

X1	   X2	   X3	   X4	   X5	   X6	   X7	  

Y1	   Y2	   Y3	   Y4	   Y5	   Y6	  

X1	   X2	   X3	   X4	   X5	   X6	   X7	  

Y1	   Y2	   Y3	   Y4	   Y6	  Y5	  

X 

X X 

Association Gap in X Gap in Y 
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Sequence	  Alignment	  

Which	  is	  the	  best	  /	  desired	  alignment?	  

Assign	  scores	  to	  associa1ons	  and	  gaps.	  
Add	  those	  to	  get	  overall	  score	  for	  the	  alignment.	  

The	  best	  alignment	  is	  the	  one	  with	  the	  highest	  score.	  

X1	   X2	   X3	   X4	   X5	   X6	   X7	  

Y1	   Y2	   Y3	   Y4	   Y5	   Y6	  
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Sequence	  Alignment	  

We	  use	  the	  Needleman-‐Wunsch	  algorithm:	  a	  dynamic	  
programming	  algorithm	  that	  given	  

•  	  two	  sequences	  of	  symbols	  

•  	  a	  associa1on	  scoring	  func1on	  
•  	  a	  gap	  scoring	  func1on	  

finds	  an	  alignment	  with	  the	  highest	  score	  efficiently.	  

Needleman,	  S.	  B.	  &	  Wunsch,	  C.	  D.	  (1970).	  A	  general	  method	  applicable	  to	  the	  search	  for	  similari1es	  in	  the	  
amino	  acid	  sequence	  of	  two	  proteins.	  Journal	  of	  Molecular	  Biology,	  48(3),	  443–453.	  

pitch	  sequences	  
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Pitch	  Scaling	  
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Subs*tu*on	  Score	  
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of creating an automatic segmentation tool, it was decided

that the task was too subjective and critical to automate.

Each segment is annotated with a word/symbol that is re-

lated to the corresponding cantillation sign. Each recording

contains approximately 130 realizations of each ta’am with

a total of 12 unique te’amim.

3.1 Pitch Contour Representation

Each recording has been converted to a sequence of fre-

quency values using the SWIPEP fundamental frequency

estimator [3] by estimating the fundamental frequency in

non-overlapping time-windows of 10ms. The frequency

sequences have been converted to sequences of real-valued

MIDI pitches with a precision of 1 cent (which is 1/100 of

an equally tempered semitone, corresponding to a frequency

difference of about 0.06%). By allowing real-valued pitches

we have a one-to-one correspondence to the frequencies,

and a linear scale in the pitch domain. For each of the

recordings, we derive a melodic scale by detecting the peaks

in a non-parametric density estimation of the distribution of

pitches, using a Gaussian kernel. This can be viewed as

a smoothed frequency histogram. Prominent peaks in the

histogram correspond to salient pitches and can be used to

form a discrete pitch scale that is specific to the recording

rather than any particular tuning system.

In a previous study [12], mean average precision values

were computed for each of the scales containing 1 to 13

pitches, taking all realizations of the same ta’am as the

query segment as relevant items, and using a distance

measure based on dynamic time warping. The finding was

that quantizing the melodic contours according to the scale

containing two pitches resulted in the highest mean average

precision. Apparently, the two most prevalent pitches have

structural meaning.

In the current study we use a different approach. Instead

of quantizing the melodic contours, we scale them linearly

according to the two most prevalent pitches in the entire

recording. We denote the higher and lower of the two

prevalent pitches as phigh and plow, respectively. Each pitch

is scaled relative to plow in units of the difference between

phigh and plow. Thus, scaled pitches with value < 0 are

below the lowest of the two prevalent pitches and pitches

with value > 1 are above the highest of the two and pitches

between 0 and 1 are between the two prevalent pitches.

As a result, different trope performances, sung at different

absolute pitch heights, are comparable.

3.2 A distance measure for melodic segments

On the acquired scaled pitch contours we apply an align-

ment algorithm as described in [13], interpreting the align-

ment score as similarity measure. This approach is closely

related to the use of dynamic time warping in [12], but

the current approach uses a more advanced, musicologically

informed, scoring function for the individual elements of the

pitch sequences.

We use the Needleman-Wunsch global alignment algo-

rithm [11]. This algorithm finds an optimal alignment of

two sequences of symbols, which, in our case, are sequences

of pitches. The quality of an alignment is measured by the

alignment score, which is the sum of the alignment scores

of the individual symbols. If we consider two sequences of

symbols x : x1, . . . , xi, . . . , xn, and y : y1, . . . , yj , . . . , ym,

then symbol xi can either be aligned with a symbol from

sequence y or with a gap. Both operations have a score,

respectively the substitution score and the gap score. The

gap score is mostly expressed as penalty, i.e. a negative

score. The optimal alignment and its score are found by

filling a matrix D recursively according to:

D(i, j) = max






D(i− 1, j − 1) + S(xi, yj)
D(i− 1, j)− γ
D(i, j − 1)− γ

, (1)

in which S(xi, yj) is a similarity measure for symbols,

γ is the gap penalty, D(0, 0) = 0, D(i, 0) = −iγ,

and D(0, j) = −jγ. D(i, j) contains the score of the

optimal alignment up to xi and yj and therefore, D(m,n)
contains the score of the optimal alignment of the complete

sequences. We can obtain the alignment itself by tracing

back from D(m,n) to D(0, 0); the standard dynamic pro-

gramming algorithm has both time and space complexity

O(nm).
The similarity measure for symbols, which returns values

in the interval [−1, 1], is in our case defined as:

S(x, y) =

�
1− 4 |spx − spy| if |spx − spy| ≤ 0.5
−1 otherwise

,

in which scaled pitch of symbol x is

spx =
px − plow,x

pheigh,x − plow,x
,

in which px is the pitch of symbol x, represented in

continuous midi encoding, and plow,x and phigh,x are the

lowest and highest pitch in the entire recording to which

symbol x belongs. spy is computed in the same way. We

use a linear gap penalty function with γ = 0.6.

Since the score of an alignment depends on the length of

the sequences, normalization is needed to compare different

alignment scores. The alignment of two long sequences

results in a much higher score than the alignment of two

short sequences. Therefore, we divide the alignment score

by the length of the shortest sequence. Thus, an exact

match results in score 1, which is the maximal score. The

scores are converted into distances by taking one minus the

normalized score, resulting in distances greater than or equal

to zero.
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, (1)

in which S(xi, yj) is a similarity measure for symbols,

γ is the gap penalty, D(0, 0) = 0, D(i, 0) = −iγ,

and D(0, j) = −jγ. D(i, j) contains the score of the

optimal alignment up to xi and yj and therefore, D(m,n)
contains the score of the optimal alignment of the complete

sequences. We can obtain the alignment itself by tracing

back from D(m,n) to D(0, 0); the standard dynamic pro-

gramming algorithm has both time and space complexity

O(nm).
The similarity measure for symbols, which returns values

in the interval [−1, 1], is in our case defined as:
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1− 4 |spx − spy| if |spx − spy| ≤ 0.5
−1 otherwise

,

in which scaled pitch of symbol x is
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pheigh,x − plow,x
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in which px is the pitch of symbol x, represented in

continuous midi encoding, and plow,x and phigh,x are the

lowest and highest pitch in the entire recording to which

symbol x belongs. spy is computed in the same way. We

use a linear gap penalty function with γ = 0.6.

Since the score of an alignment depends on the length of

the sequences, normalization is needed to compare different

alignment scores. The alignment of two long sequences

results in a much higher score than the alignment of two

short sequences. Therefore, we divide the alignment score

by the length of the shortest sequence. Thus, an exact

match results in score 1, which is the maximal score. The

scores are converted into distances by taking one minus the

normalized score, resulting in distances greater than or equal

to zero.
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Distance	  Matrix	  
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Distance	  Matrix	  
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Retrieval	  Evalua*on	  

Ta’am Average Ta’am Average
(Morocco) Precision (Hungary) Precision

(Morocco) (Hungary)
sofpasuq 0.550 sofpasuq 0.994
katon 0.399 revia 0.967
tipha 0.306 etnachta 0.945
mapah 0.299 pashta 0.683
pashta 0.269 tipha 0.673
revia 0.245 katon 0.562
etnachta 0.234 mapah 0.550
zakef 0.206 merha 0.530
merha 0.158 zakef 0.231
munach 0.147 munach 0.179
kadma 0.036 kadma 0.040

Table 1. Mean average precision for different te’amim
based on the alignment distances.

The values are shown in Table 1.
Secondly, we show the distribution of distances between

renditions of the same ta’am by plotting histograms of those
distances. Figure 3 shows the distribution of alignment-
based distances between unrelated segments. This his-
togram can be used as reference for comparing distances
between related segments. The interface, as described in the
previous section, is used to examine the relations between
individual audio segments.
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Figure 3. Distribution of distances between unrelated
segments.

The obtained overall mean average precisions are 0.644
for the Hungarian rendition and 0.309 for the Moroccan one,
which are improvements concerning the results that were
previously achieved in [12] (0.505 and 0.229 respectively).
Using the current alignment-approach, the segments are
better recognized, but the overall trend appears the same,
namely a better retrieval result for the Hungarian rendition
as compared to the Moroccan. Since we do not know a-
priori whether every ta’am has a high level of distinction, we
cannot draw conclusions about the quality of our distance
measure from the MAP-values. A low MAP-value does not
necessarily mean that the distance measure fails, but could
also indicate that the performance of the specific ta’am is
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Figure 4. Distribution of distances between renditions
of the tipha in the Moroccan interpretation (left) and the
Hungarian interpretation (right).
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Figure 5. Distribution of distances between renditions of
the sof pasuq in the Moroccan interpretation (left) and the
Hungarian interpretation (right).

variable or not distinct from performance of other te’amim.
Therefore, in remainder of our analysis, we focus on var-

ious key te’amim, using differences between distances and
mean-average-precisions, along with musicological domain
knowledge, to draw conclusions. Observing the renditions
of sof pasuq and tipha in the Hungarian tradition, one
can derive that they inhibit a definite melodic stability.
For the sof pasuq we obtain a mean average precision as
high as 0.994 and for the tipha 0.673 (for comparison, the
figures for the Moroccan performance are 0.550 and 0.306
respectively). This indicates that the 17 sof pasuqs are both
similar to each other and distinct from all other te’amim.
The same applies to a somewhat lesser extent to the 24
tiphas. These findings are confirmed by the distributions
of distances as shown in Figures 4 and 5.
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Figure 6. Distribution of distances between renditions of
the etnachta in the Moroccan interpretation (left) and the
Hungarian interpretation (right).

Analyzing the distribution of distances between Moroc-

Mean	  Average	  Precision	  values	  for	  various	  te’amim	  
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Distribu*on	  of	  Distances	  
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Distances	  between	  unrelated	  segments	  
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Distribu*on	  of	  Distances	  
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Distribu*on	  of	  Distances	  
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Distribu*on	  of	  Distances	  
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Conclusions	  

•  Askenazi	  rendi1on	  is	  melodically	  more	  stable	  than	  Sephardic.	  

•  Our	  findings	  seem	  to	  support	  the	  thesis	  of	  Avenary	  that	  
European	  can1lla1on	  has	  been	  influenced	  by	  chris1an	  chant:	  
recita1on	  tone	  and	  final	  tone.	  

•  Syntac1cally	  important	  te’amim	  are	  more	  dis1nct	  in	  the	  
reading.	  

•  Musicology-‐driven	  experimental	  setup	  is	  successful.	  
•  Intensive	  coopera1on	  is	  needed	  when	  building	  tools	  for	  

musicological	  research.	  
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Future	  Work	  

•  Data…	  data…	  data	  
•  More	  recordings	  

•  More	  performance	  tradi1ons	  

•  Inves1gate	  op1mal	  reduc1on	  of	  the	  derived	  scale.	  

•  Study	  variability	  within	  and	  between	  tradi1ons	  at	  a	  large	  
scale.	  

•  Gain	  more	  insight	  in	  melodic	  varia1on	  due	  to	  oral	  cultural	  
transmission.	  
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Thank	  you	  


