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Te’amim	
  (singular:	
  ta’am)	
  

Torah	
  can1lla1on	
  signs	
  (blue):	
  

Added	
  together	
  with	
  vowels	
  (red)	
  by	
  masori1c	
  rabies	
  during	
  
sixth	
  to	
  tenth	
  centuries.	
  

4 

Example:	
  Song	
  of	
  Songs	
  (Shir	
  HaShirim)	
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Example:	
  Song	
  of	
  Songs	
  (Shir	
  HaShirim)	
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Syntax	
  

“Va-­‐yomer	
  eved	
  Avraham	
  anokhi”	
  
	
  “And	
  he	
  said:	
  I	
  am	
  a	
  slave	
  of	
  Abraham.”	
  	
  

Other	
  Possible	
  Meanings	
  without	
  Te’amim:	
  
1)“Abraham’s	
  slave	
  said,	
  ‘It	
  is	
  I.’”	
  
2)“And	
  the	
  slave	
  said:	
  I	
  am	
  Abraham”	
  

Disjunc*ve	
  Accent	
  etnachta	
  	
  
	
  on	
  the	
  words	
  	
  	
  
	
  “va-­‐yomer”	
  (and	
  he	
  said)	
  

	
  Conjunc*ve	
  Accent	
  merha	
  0pha	
  	
  	
  	
  	
  
	
  on	
  the	
  words	
  	
  	
  
	
  “eved	
  avraham”	
  (slave	
  /	
  Abraham)	
  slave	
  of	
  Abraham:”	
  

Meaning	
  of	
  Sentence	
  with	
  Te’amim	
  :	
  	
  
	
  “And	
  he	
  said:	
  slave	
  of	
  Abraham	
  [am]	
  I.”	
  	
  

Disjunc1ve	
  vs.	
  Conjunc1ve	
  te’amim	
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Rendi*on	
  

Rendi1on	
  determined	
  by:	
  

•  Text	
  posi1on	
  
•  Liturgy	
  
•  Local	
  (oral)	
  tradi1ons	
  
•  Crea1vity	
  of	
  the	
  performer	
  

There	
  are	
  ethnomusicological	
  archives	
  with	
  large	
  amounts	
  of	
  
recordings	
  from	
  various	
  tradi1ons	
  (Europe,	
  Indonesia,	
  Iran,	
  
Jemen,	
  Israel,	
  …).	
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Aim	
  

Our	
  (long-­‐term)	
  aims	
  are	
  to:	
  

•  inves1gate	
  melodic	
  stability	
  and	
  variability	
  between	
  and	
  
within	
  various	
  reading	
  tradi1ons	
  

•  test	
  hypotheses	
  about	
  influences	
  from	
  outside	
  Judaism	
  (e.g.	
  
Hanoch	
  Avenary	
  (1978):	
  Chris1an	
  Chant).	
  

•  befer	
  understand	
  the	
  rela1onship	
  between	
  improvisa1on	
  and	
  
nota1on-­‐based	
  chant.	
  

Current	
  study:	
  

Compare	
  two	
  rendi1ons	
  of	
  the	
  same	
  text	
  (Song	
  of	
  Songs)	
  from	
  
Askenazi	
  (Hungary)	
  and	
  Sephardic	
  (Morocco)	
  tradi1ons.	
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Computa*onal	
  Ethnomusicology	
  

Tradi1onal	
  approach:	
  listening	
  and	
  manual	
  annota1on	
  

Recently:	
  advances	
  in	
  computa1onal	
  ethnomusicology	
  
(see	
  e.g.,	
  G.	
  Tzanetakis,	
  A.	
  Kapur,	
  W.A.	
  Schloss,	
  and	
  M.	
  Wright.	
  “Computa1onal	
  ethnomusicology”.	
  Journal	
  of	
  

interdisciplinary	
  music	
  studies,	
  1(2):1–24,	
  2007).	
  

Our	
  approach:	
  

•  Automa1c	
  analysis	
  of	
  audio	
  recordings	
  

•  Web-­‐based,	
  interac1ve,	
  visualiza1ons	
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Data	
  Set	
  

Askenazi	
  reading	
  (Hungary)	
  of	
  Shir-­‐HaShirim	
  (Song	
  of	
  songs)	
  

Sephardic	
  reading	
  (Morocco)	
  of	
  Shir-­‐HaShirim	
  (Song	
  of	
  songs)	
  

Audio	
  has	
  been	
  segmented	
  in	
  separate	
  te’amim	
  by	
  hand.	
  

In	
  each	
  recording:	
  c.	
  130	
  segments	
  (te’amim	
  rendi1ons).	
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Scale	
  Deduc*on	
  from	
  Audio	
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Can*lla*on	
  Interface	
  

hfp://can1llion.sness.net/ismir2011	
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Distance	
  Measure	
  for	
  Segments	
  

To	
  inves1gate	
  stability	
  of	
  pitch	
  contours,	
  we	
  need	
  an	
  
appropriate	
  distance	
  measure	
  for	
  audio	
  segments.	
  

We	
  have	
  the	
  contours	
  available	
  as	
  sequences	
  of	
  pitches.	
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Sequence	
  Alignment	
  

X1	
   X2	
   X3	
   X4	
   X5	
   X6	
   X7	
  

Y1	
   Y2	
   Y3	
   Y4	
   Y5	
   Y6	
  

X1	
   X2	
   X3	
   X4	
   X5	
   X6	
   X7	
  

Y1	
   Y2	
   Y3	
   Y4	
   Y6	
  Y5	
  

X 

X X 

Association Gap in X Gap in Y 
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Sequence	
  Alignment	
  

Which	
  is	
  the	
  best	
  /	
  desired	
  alignment?	
  

Assign	
  scores	
  to	
  associa1ons	
  and	
  gaps.	
  
Add	
  those	
  to	
  get	
  overall	
  score	
  for	
  the	
  alignment.	
  

The	
  best	
  alignment	
  is	
  the	
  one	
  with	
  the	
  highest	
  score.	
  

X1	
   X2	
   X3	
   X4	
   X5	
   X6	
   X7	
  

Y1	
   Y2	
   Y3	
   Y4	
   Y5	
   Y6	
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Sequence	
  Alignment	
  

We	
  use	
  the	
  Needleman-­‐Wunsch	
  algorithm:	
  a	
  dynamic	
  
programming	
  algorithm	
  that	
  given	
  

•  	
  two	
  sequences	
  of	
  symbols	
  

•  	
  a	
  associa1on	
  scoring	
  func1on	
  
•  	
  a	
  gap	
  scoring	
  func1on	
  

finds	
  an	
  alignment	
  with	
  the	
  highest	
  score	
  efficiently.	
  

Needleman,	
  S.	
  B.	
  &	
  Wunsch,	
  C.	
  D.	
  (1970).	
  A	
  general	
  method	
  applicable	
  to	
  the	
  search	
  for	
  similari1es	
  in	
  the	
  
amino	
  acid	
  sequence	
  of	
  two	
  proteins.	
  Journal	
  of	
  Molecular	
  Biology,	
  48(3),	
  443–453.	
  

pitch	
  sequences	
  

17 

Pitch	
  Scaling	
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phigh	
  :	
  highest	
  of	
  the	
  two	
  most	
  prevalent	
  pitches.	
  
Plow	
  :	
  lowest	
  of	
  the	
  two	
  most	
  prevalent	
  pitches.	
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Subs*tu*on	
  Score	
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of creating an automatic segmentation tool, it was decided

that the task was too subjective and critical to automate.

Each segment is annotated with a word/symbol that is re-

lated to the corresponding cantillation sign. Each recording

contains approximately 130 realizations of each ta’am with

a total of 12 unique te’amim.

3.1 Pitch Contour Representation

Each recording has been converted to a sequence of fre-

quency values using the SWIPEP fundamental frequency

estimator [3] by estimating the fundamental frequency in

non-overlapping time-windows of 10ms. The frequency

sequences have been converted to sequences of real-valued

MIDI pitches with a precision of 1 cent (which is 1/100 of

an equally tempered semitone, corresponding to a frequency

difference of about 0.06%). By allowing real-valued pitches

we have a one-to-one correspondence to the frequencies,

and a linear scale in the pitch domain. For each of the

recordings, we derive a melodic scale by detecting the peaks

in a non-parametric density estimation of the distribution of

pitches, using a Gaussian kernel. This can be viewed as

a smoothed frequency histogram. Prominent peaks in the

histogram correspond to salient pitches and can be used to

form a discrete pitch scale that is specific to the recording

rather than any particular tuning system.

In a previous study [12], mean average precision values

were computed for each of the scales containing 1 to 13

pitches, taking all realizations of the same ta’am as the

query segment as relevant items, and using a distance

measure based on dynamic time warping. The finding was

that quantizing the melodic contours according to the scale

containing two pitches resulted in the highest mean average

precision. Apparently, the two most prevalent pitches have

structural meaning.

In the current study we use a different approach. Instead

of quantizing the melodic contours, we scale them linearly

according to the two most prevalent pitches in the entire

recording. We denote the higher and lower of the two

prevalent pitches as phigh and plow, respectively. Each pitch

is scaled relative to plow in units of the difference between

phigh and plow. Thus, scaled pitches with value < 0 are

below the lowest of the two prevalent pitches and pitches

with value > 1 are above the highest of the two and pitches

between 0 and 1 are between the two prevalent pitches.

As a result, different trope performances, sung at different

absolute pitch heights, are comparable.

3.2 A distance measure for melodic segments

On the acquired scaled pitch contours we apply an align-

ment algorithm as described in [13], interpreting the align-

ment score as similarity measure. This approach is closely

related to the use of dynamic time warping in [12], but

the current approach uses a more advanced, musicologically

informed, scoring function for the individual elements of the

pitch sequences.

We use the Needleman-Wunsch global alignment algo-

rithm [11]. This algorithm finds an optimal alignment of

two sequences of symbols, which, in our case, are sequences

of pitches. The quality of an alignment is measured by the

alignment score, which is the sum of the alignment scores

of the individual symbols. If we consider two sequences of

symbols x : x1, . . . , xi, . . . , xn, and y : y1, . . . , yj , . . . , ym,

then symbol xi can either be aligned with a symbol from

sequence y or with a gap. Both operations have a score,

respectively the substitution score and the gap score. The

gap score is mostly expressed as penalty, i.e. a negative

score. The optimal alignment and its score are found by

filling a matrix D recursively according to:

D(i, j) = max






D(i− 1, j − 1) + S(xi, yj)
D(i− 1, j)− γ
D(i, j − 1)− γ

, (1)

in which S(xi, yj) is a similarity measure for symbols,

γ is the gap penalty, D(0, 0) = 0, D(i, 0) = −iγ,

and D(0, j) = −jγ. D(i, j) contains the score of the

optimal alignment up to xi and yj and therefore, D(m,n)
contains the score of the optimal alignment of the complete

sequences. We can obtain the alignment itself by tracing

back from D(m,n) to D(0, 0); the standard dynamic pro-

gramming algorithm has both time and space complexity

O(nm).
The similarity measure for symbols, which returns values

in the interval [−1, 1], is in our case defined as:

S(x, y) =

�
1− 4 |spx − spy| if |spx − spy| ≤ 0.5
−1 otherwise

,

in which scaled pitch of symbol x is

spx =
px − plow,x

pheigh,x − plow,x
,

in which px is the pitch of symbol x, represented in

continuous midi encoding, and plow,x and phigh,x are the

lowest and highest pitch in the entire recording to which

symbol x belongs. spy is computed in the same way. We

use a linear gap penalty function with γ = 0.6.

Since the score of an alignment depends on the length of

the sequences, normalization is needed to compare different

alignment scores. The alignment of two long sequences

results in a much higher score than the alignment of two

short sequences. Therefore, we divide the alignment score

by the length of the shortest sequence. Thus, an exact

match results in score 1, which is the maximal score. The

scores are converted into distances by taking one minus the

normalized score, resulting in distances greater than or equal

to zero.

of creating an automatic segmentation tool, it was decided

that the task was too subjective and critical to automate.

Each segment is annotated with a word/symbol that is re-

lated to the corresponding cantillation sign. Each recording

contains approximately 130 realizations of each ta’am with

a total of 12 unique te’amim.

3.1 Pitch Contour Representation

Each recording has been converted to a sequence of fre-

quency values using the SWIPEP fundamental frequency

estimator [3] by estimating the fundamental frequency in

non-overlapping time-windows of 10ms. The frequency

sequences have been converted to sequences of real-valued

MIDI pitches with a precision of 1 cent (which is 1/100 of

an equally tempered semitone, corresponding to a frequency

difference of about 0.06%). By allowing real-valued pitches

we have a one-to-one correspondence to the frequencies,

and a linear scale in the pitch domain. For each of the

recordings, we derive a melodic scale by detecting the peaks

in a non-parametric density estimation of the distribution of

pitches, using a Gaussian kernel. This can be viewed as

a smoothed frequency histogram. Prominent peaks in the

histogram correspond to salient pitches and can be used to

form a discrete pitch scale that is specific to the recording

rather than any particular tuning system.

In a previous study [12], mean average precision values

were computed for each of the scales containing 1 to 13

pitches, taking all realizations of the same ta’am as the

query segment as relevant items, and using a distance

measure based on dynamic time warping. The finding was

that quantizing the melodic contours according to the scale

containing two pitches resulted in the highest mean average

precision. Apparently, the two most prevalent pitches have

structural meaning.

In the current study we use a different approach. Instead

of quantizing the melodic contours, we scale them linearly

according to the two most prevalent pitches in the entire

recording. We denote the higher and lower of the two

prevalent pitches as phigh and plow, respectively. Each pitch

is scaled relative to plow in units of the difference between

phigh and plow. Thus, scaled pitches with value < 0 are

below the lowest of the two prevalent pitches and pitches

with value > 1 are above the highest of the two and pitches

between 0 and 1 are between the two prevalent pitches.

As a result, different trope performances, sung at different

absolute pitch heights, are comparable.

3.2 A distance measure for melodic segments

On the acquired scaled pitch contours we apply an align-

ment algorithm as described in [13], interpreting the align-

ment score as similarity measure. This approach is closely

related to the use of dynamic time warping in [12], but

the current approach uses a more advanced, musicologically

informed, scoring function for the individual elements of the

pitch sequences.

We use the Needleman-Wunsch global alignment algo-

rithm [11]. This algorithm finds an optimal alignment of

two sequences of symbols, which, in our case, are sequences

of pitches. The quality of an alignment is measured by the

alignment score, which is the sum of the alignment scores

of the individual symbols. If we consider two sequences of

symbols x : x1, . . . , xi, . . . , xn, and y : y1, . . . , yj , . . . , ym,

then symbol xi can either be aligned with a symbol from

sequence y or with a gap. Both operations have a score,

respectively the substitution score and the gap score. The

gap score is mostly expressed as penalty, i.e. a negative

score. The optimal alignment and its score are found by

filling a matrix D recursively according to:

D(i, j) = max






D(i− 1, j − 1) + S(xi, yj)
D(i− 1, j)− γ
D(i, j − 1)− γ

, (1)

in which S(xi, yj) is a similarity measure for symbols,

γ is the gap penalty, D(0, 0) = 0, D(i, 0) = −iγ,

and D(0, j) = −jγ. D(i, j) contains the score of the

optimal alignment up to xi and yj and therefore, D(m,n)
contains the score of the optimal alignment of the complete

sequences. We can obtain the alignment itself by tracing

back from D(m,n) to D(0, 0); the standard dynamic pro-

gramming algorithm has both time and space complexity

O(nm).
The similarity measure for symbols, which returns values

in the interval [−1, 1], is in our case defined as:

S(x, y) =

�
1− 4 |spx − spy| if |spx − spy| ≤ 0.5
−1 otherwise

,

in which scaled pitch of symbol x is

spx =
px − plow,x

pheigh,x − plow,x
,

in which px is the pitch of symbol x, represented in

continuous midi encoding, and plow,x and phigh,x are the

lowest and highest pitch in the entire recording to which

symbol x belongs. spy is computed in the same way. We

use a linear gap penalty function with γ = 0.6.

Since the score of an alignment depends on the length of

the sequences, normalization is needed to compare different

alignment scores. The alignment of two long sequences

results in a much higher score than the alignment of two

short sequences. Therefore, we divide the alignment score

by the length of the shortest sequence. Thus, an exact

match results in score 1, which is the maximal score. The

scores are converted into distances by taking one minus the

normalized score, resulting in distances greater than or equal

to zero.



4 

19 

Distance	
  Matrix	
  

20 

Distance	
  Matrix	
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Retrieval	
  Evalua*on	
  

Ta’am Average Ta’am Average
(Morocco) Precision (Hungary) Precision

(Morocco) (Hungary)
sofpasuq 0.550 sofpasuq 0.994
katon 0.399 revia 0.967
tipha 0.306 etnachta 0.945
mapah 0.299 pashta 0.683
pashta 0.269 tipha 0.673
revia 0.245 katon 0.562
etnachta 0.234 mapah 0.550
zakef 0.206 merha 0.530
merha 0.158 zakef 0.231
munach 0.147 munach 0.179
kadma 0.036 kadma 0.040

Table 1. Mean average precision for different te’amim
based on the alignment distances.

The values are shown in Table 1.
Secondly, we show the distribution of distances between

renditions of the same ta’am by plotting histograms of those
distances. Figure 3 shows the distribution of alignment-
based distances between unrelated segments. This his-
togram can be used as reference for comparing distances
between related segments. The interface, as described in the
previous section, is used to examine the relations between
individual audio segments.
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Figure 3. Distribution of distances between unrelated
segments.

The obtained overall mean average precisions are 0.644
for the Hungarian rendition and 0.309 for the Moroccan one,
which are improvements concerning the results that were
previously achieved in [12] (0.505 and 0.229 respectively).
Using the current alignment-approach, the segments are
better recognized, but the overall trend appears the same,
namely a better retrieval result for the Hungarian rendition
as compared to the Moroccan. Since we do not know a-
priori whether every ta’am has a high level of distinction, we
cannot draw conclusions about the quality of our distance
measure from the MAP-values. A low MAP-value does not
necessarily mean that the distance measure fails, but could
also indicate that the performance of the specific ta’am is
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Figure 4. Distribution of distances between renditions
of the tipha in the Moroccan interpretation (left) and the
Hungarian interpretation (right).
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Figure 5. Distribution of distances between renditions of
the sof pasuq in the Moroccan interpretation (left) and the
Hungarian interpretation (right).

variable or not distinct from performance of other te’amim.
Therefore, in remainder of our analysis, we focus on var-

ious key te’amim, using differences between distances and
mean-average-precisions, along with musicological domain
knowledge, to draw conclusions. Observing the renditions
of sof pasuq and tipha in the Hungarian tradition, one
can derive that they inhibit a definite melodic stability.
For the sof pasuq we obtain a mean average precision as
high as 0.994 and for the tipha 0.673 (for comparison, the
figures for the Moroccan performance are 0.550 and 0.306
respectively). This indicates that the 17 sof pasuqs are both
similar to each other and distinct from all other te’amim.
The same applies to a somewhat lesser extent to the 24
tiphas. These findings are confirmed by the distributions
of distances as shown in Figures 4 and 5.
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Figure 6. Distribution of distances between renditions of
the etnachta in the Moroccan interpretation (left) and the
Hungarian interpretation (right).

Analyzing the distribution of distances between Moroc-

Mean	
  Average	
  Precision	
  values	
  for	
  various	
  te’amim	
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Distribu*on	
  of	
  Distances	
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Distribu*on	
  of	
  Distances	
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Conclusions	
  

•  Askenazi	
  rendi1on	
  is	
  melodically	
  more	
  stable	
  than	
  Sephardic.	
  

•  Our	
  findings	
  seem	
  to	
  support	
  the	
  thesis	
  of	
  Avenary	
  that	
  
European	
  can1lla1on	
  has	
  been	
  influenced	
  by	
  chris1an	
  chant:	
  
recita1on	
  tone	
  and	
  final	
  tone.	
  

•  Syntac1cally	
  important	
  te’amim	
  are	
  more	
  dis1nct	
  in	
  the	
  
reading.	
  

•  Musicology-­‐driven	
  experimental	
  setup	
  is	
  successful.	
  
•  Intensive	
  coopera1on	
  is	
  needed	
  when	
  building	
  tools	
  for	
  

musicological	
  research.	
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Future	
  Work	
  

•  Data…	
  data…	
  data	
  
•  More	
  recordings	
  

•  More	
  performance	
  tradi1ons	
  

•  Inves1gate	
  op1mal	
  reduc1on	
  of	
  the	
  derived	
  scale.	
  

•  Study	
  variability	
  within	
  and	
  between	
  tradi1ons	
  at	
  a	
  large	
  
scale.	
  

•  Gain	
  more	
  insight	
  in	
  melodic	
  varia1on	
  due	
  to	
  oral	
  cultural	
  
transmission.	
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Thank	
  you	
  


