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ABSTRACT

Many Western songs are hierarchically structured in stan-
zas and phrases. The melody of the song is repeated for
each stanza, while the lyrics vary. Each stanza is subdi-
vided into phrases. It is to be expected that melodic and
textual formulas at the end of the phrases offer intrinsic
clues of closure to a listener or singer. In the current paper
we aim at a method to detect such cadences in symbolically
encoded folk songs. We take a trigram approach in which
we classify trigrams of notes and pitches as cadential or
as non-cadential. We use pitch, contour, rhythmic, textual,
and contextual features, and a group of features based on
the conditions of closure as stated by Narmour [11]. We
employ a random forest classification algorithm. The pre-
cision of the classifier is considerably improved by taking
the class labels of adjacent trigrams into account. An abla-
tion study shows that none of the kinds of features is suffi-
cient to account for good classification, while some of the
groups perform moderately well on their own.

1. INTRODUCTION

This paper presents both a method to detect cadences in
Western folk-songs, particularly in folk songs from Dutch
oral tradition, and a study to the importance of various mu-
sical parameters for cadence detection.

There are various reasons to focus specifically on ca-
dence patterns. The concept of cadence has played a major
role in the study of Western folk songs. In several of the
most important folks song classification systems, cadence
tones are among the primary features that are used to put
the melodies into a linear ordering. In one of the earli-
est classification systems, devised by Ilmari Krohn [10],
melodies are firstly ordered according to the number of
phrases, and secondly according to the sequence of ca-
dence tones. This method was adapted for Hungarian mel-
odies by Bártok and Kodály [16], and later on for German
folk songs by Suppan and Stief [17] in their monumental
Melodietypen des Deutschen Volksgesanges. Bronson [3]
introduced a number of features for the study of Anglo-
American folk song melodies, of which final cadence and
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mid-cadence are the most prominent ones. One of the
underlying assumptions is that the sequence of cadence
tones is relatively stable in the process of oral transmis-
sion. Thus, variants of the same melody are expected to
end up near to each other in the resulting ordering.

From a cognitive point of view, the perception of clo-
sure is of fundamental importance for a listener or singer
to understand a melody. In terms of expectation [8, 11],
a final cadence implies no continuation at all. It is to be
expected that specific features of the songs that are related
to closure show different values for cadential patterns as
compared to non-cadential patterns. We include a subset
of features that are based on the conditions of closure as
stated by Narmour [11, p.11].

Cadence detection is related to the problem of segmen-
tation, which is relevant for Music Information Retrieval
[21]. Most segmentation methods for symbolically repre-
sented melodies are either based on pre-defined rules [4,
18] or on statistical learning [1,9,12]. In the current paper,
we focus on the musical properties of cadence formulas
rather than on the task of segmentation as such.

Taking Dutch folk songs as case study, we investigate
whether it is possible to derive a general model of the mel-
odic patterns or formulas that specifically indicate melodic
cadences using both melodic and textual features. To ad-
dress this question, we take a computational approach by
employing a random forest classifier (Sections 5 and 6).

To investigate which musical parameters are of impor-
tance for cadence detection, we perform an ablation study
in which we subsequently remove certain types of features
in order to evaluate the importance of the various kinds of
features (Section 7).

2. DATA

We perform all our experiments on the folk song collec-
tion from the Meertens Tune Collections (MTC-FS, ver-
sion 1.0), which is a set of 4,120 symbolically encoded
Dutch folk songs. 1 Roughly half of it consists of tran-
scriptions from field recordings that were made in the Nether-
lands during the 20th century. The other half is taken from
song books that contain repertoire that is directly related
to the recordings. Thus, we have a coherent collection of
songs that reflects Dutch everyday song culture in the early
20th century. Virtually all of these songs have a stanzaic
structure. Each stanza repeats the melody, and each stanza

1 Available from: http://www.liederenbank.nl/mtc.
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consists of a number of phrases. Both in the transcrip-
tions and in the song books, phrase endings are indicated.
Figure 1 shows a typical song from the collection. The
language of the songs is standard Dutch with occasionally
some dialect words or nonsense syllables. All songs were
digitally encoded by hand at the Meertens Institute (Ams-
terdam) and are available in Humdrum **kern format. The
phrase endings were encoded as well and are available for
computational analysis and modeling.

3. OUR APPROACH

Our general approach is to isolate trigrams from the melo-
dies and to label those as either cadential or non-cadential.
A cadential trigram is the last trigram in a phrase. We com-
pare two kinds of trigrams: trigrams of successive notes
(note-trigrams), and trigrams of successive pitches (pitch-
trigrams), considering repeated pitches as one event. In the
case of pitch-trigrams, a cadence pattern always consists of
the three last unique pitches of the phrase. There are two
reasons for including pitch-trigrams. First, pitch repetition
is often caused by the need to place the right number of
syllables to the melody. It occurs that a quarter note in one
stanza corresponds to two eighth notes in another stanza
because there is an extra syllable at that spot in the song
text. Second, in models of closure in melody [11, 15] suc-
cessions of pitches are of primary importance.

Figure 1 depicts all pitch-trigrams in the presented mel-
ody. The trigram that ends on the final note of a phrase
is a cadential trigram. These are indicated in bold. Some
cadential trigrams cross a phrase boundary when the next
phrase starts with the same pitch.

From each trigram we extract a number of feature val-
ues that reflect both melodic and textual properties. We
then perform a classification experiment using a Random
Forest Classifier [2]. This approach can be regarded a ‘bag-
of-trigrams’ approach, where each prediction is done inde-
pendently of the others, i.e. all sequential information is
lost. Therefore, as a next step we take the labels of the
direct neighboring trigrams into account as well. The fi-
nal classification is then based on a majority vote of the
predicted labels of adjacent trigrams. These steps will be
explained in detail in the next sections.
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Figure 1. Examples of pitch-trigrams. The cadential tri-
grams are indicated in bold.

4. FEATURES

We represent each trigram as a vector of feature values. We
measure several basic properties of the individual pitches
and of the pattern as a whole. The code to automatically
extract the feature values was written in Python, using the
music21 toolbox [5]. The features are divided into groups
that are related to distinct properties of the songs. Some
features occur in more than one group. The following
overview shows all features and in parentheses the value
for the first trigram in Figure 1. Detailed explanations are
provided in sections 4.1 and 4.2.

Pitch Features
Scale degree Scale degrees of the first, second, and third item (5, 1, 3).
Range Difference between highest and lowest pitch (4).
Has contrast third Whether there are both even and odd scale degrees in

the trigram (False).

Contour Features
Contains leap Whether there is a leap in the trigram (True).
Is ascending Whether the first and second intervals, and both are ascend-

ing (False, True, False).
Is descending Whether the first and second intervals, and both are de-

scending (True, False, False).
Large-small Whether the first interval is large and the second is small

(True).
Registral change Whether there is a change in direction between the first

and the second interval (True).

Rhythmic Features
Beat strength The metric weights of the first, second and third item (0.25,

1.0, 0.25).
Min beat strength The smallest metric weight (0.25).
Next is rest Whether a rest follows the first, second and third item (False,

False, False).
Short-long Whether the second item is longer than the first, and the third

is longer than the second (False, False).
Meter The meter at the beginning of the trigram (“6/8”).

Textual Features
Rhymes Whether a rhyme word ends at the first, second and third item

(False, False, False).
Word stress Whether a stressed syllable is at the first, second and third

item (True, True, True).
Distance to last rhyme Number of notes between the last the first, second

and third item and the last rhyme word or beginning of the melody
(0, 1, 2).

Narmour Closure Features
Beat strength The metric weights of the first, second and third item (0.25,

1.0, 0.25).
Next is rest Whether a rest follows the first, second and third item (False,

False, False).
Short-long Whether the second item is longer than the first, and the third

is longer than the second (False, False).
Large-small Whether the first interval is large (≥ fifth) and the second is

small (≤ third) (True).
Registral change Whether there is a change in direction between the first

and the second interval (True).

Contextual Features
Next is rest third Whether a rest or end of melody follows the third item

(False).
Distance to last rhyme Number of notes between the last the first, second

and third item and the last rhyme word or beginning of the melody
(0, 1, 2).

4.1 Melodic Features

Several of the features need some explanation. In this sec-
tion we describe the melodic features, while in the next
section, we explain how we extracted the textual features.

HasContrastThird is based on the theory of Jos Smits-
Van Waesberghe [15], the core idea of which is that a mel-
ody gets its tension and interest by alternating between
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pitches with even and uneven scale degrees, which are two
contrasting series of thirds.

The metric weight in the Rhythmic features is the beat-
strength as implemented in music21’s meter model.

The Narmour features are based on the six (preliminary)
conditions of closure that Narmour states at the beginning
of his first book on the Implication-Realisation theory [11,
p.11]: “[...] melodic closure on some level occurs when
1. a rest, an onset of another structure, or a repetition in-
terrupts an implied pattern; 2. metric emphasis is strong;
3. consonance resolves dissonance; 4. duration moves cu-
mulatively (short note to long note); 5. intervallic motion
moves from large interval to small interval; 6. registral di-
rection changes (up to down, down to up, lateral to up, lat-
eral to down, up to lateral, or down to lateral). Of course,
these six may appear in any combination.” Because the
melodies are monophonic, condition 3 has no counterpart
in our feature set.

The contextual features are not features of the trigram in
isolation, but are related to the position in the melody. In an
initial experiment we found that the distance between the
first note of the trigram and the last cadence is an important
predictor for the next cadence. Since this is based on the
ground-truth label, we cannot include it directly into our
feature set. Since we expect rhyme in the text to have a
strong relation with cadence in the melody, we include the
distance to the last rhyme word in number of notes.
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Figure 2. Rhyme as detected by our method. The first line
shows the original text after removing non-content words.
The second line shows the phonological representations
of the words (in SAMPA notation). The third line shows
whether rhyme is detected (‘True’ if a rhyme word ends at
the corresponding note).

4.2 Textual Features

In many poetical texts, phrase boundaries are determined
by sequences of rhyme. These establish a structure in a
text, both for aesthetics pleasure and memory aid [14]. In
folk music, phrasal boundaries established by sequences of
rhyme are likely to relate to phrases in the melody.

We developed a rhyme detection system which allows
us to extract these sequences of rhyming lyrics. Because
of orthographical ambiguities (e.g. cruise, where /u:/ is
represented by ui whereas in muse it is represented by u),
it is not as straightforward to perform rhyme detection on
orthographical representations of words. Therefore, we
transform each word into its phonological representation
(e.g. cruise becomes /kru:z/ and bike /baIk/).
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Figure 3. Example sliding window for phoneme classifi-
cation.

We approach the problem of phonemicization as a su-
pervised classification task, where we try to predict for
each character in a given word its corresponding phoneme.
We take a sliding window-based approach where for each
focus character (i.e. the character for which we want to pre-
dict its phonemic representation) we extract as features n
characters to the left of the focus character, n characters to
the right, and the focus character itself. Figure 3 provides
a graphical representation of the feature vectors extracted
for the word cruise. The fourth column represents the fo-
cus character with a context of three characters before and
three after the focus character. The last column represents
the target phonemes which we would like to predict. Note
that the first target phoneme in Figure 3 is preceded by an
apostrophe (’k), which represents the stress position on the
first (and only) syllable in cruise. This symbolic notation
of stress in combination with phonology allows us to si-
multaneously extract a phonological representation of the
input words as well as their stress patterns. For all words
in the lyrics in the dataset we apply our sliding window
approach with n = 5, which serves as input for the su-
pervised classifier. In this paper we make use of a k = 1
Nearest Neighbor Classifier as implemented by [6] using
default settings, which was trained on the data of the e-
Lex database 2 . In the running text of our lyrics, 89.5% of
the words has a direct hit in the instance base, and for the
remaining words in many cases suitable nearest neighbors
were found. Therefore, we consider the phonemicization
sufficiently reliable.

We assume that only content words (nouns, adjectives,
verbs and adverbials) are possible candidate rhyme words.
This assumption follows linguistic knowledge as phrases
typically do not end with function words such as determin-
ers, prepositions, etcetera. Function words are part of a
closed category in Dutch. We extract all function words
from the lexical database e-Lex and mark for each word in
each lyric whether it is a function word.

We implemented rhyme detection according to the rules
for Dutch rhyme as stated in [19]. The algorithm is straight-
forward. We compare the phoneme-representations of two
words backwards, starting at the last phoneme, until we
reach the first vowel, excluding schwas. If all phonemes

2 http://tst-centrale.org/en/producten/lexica/
e-lex/7-25
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Class pr rec F1 σF1
support

note-trigrams
cadence 0.84 0.72 0.78 0.01 23,925
nocadence 0.96 0.98 0.97 0.01 183,780
pitch-trigrams
cadence 0.85 0.69 0.76 0.01 23,838
nocadence 0.95 0.98 0.96 0.00 130,992

Table 1. Results for single labels.

and the vowel are exactly the same, the two words rhyme.
As an example we take kinderen (‘children’) and hin-

deren (‘to hinder’). The phoneme representations as pro-
duced by our method are /kInd@r@/ and /hInd@r@/. The
first vowel starting from the back of the word, exclud-
ing the schwas (/@/), is /I/. Starting from this vowel,
the phoneme representations of both words are identical
(/Ind@r@/). Therefore these words rhyme.

We also consider literal repetition of a word as ‘rhyme’,
but not if a sequence of words is repeated literally, such
as in the example in Figure 1. Such repetition of entire
phrases occurs in many songs. Labeling all words as rhyme
words would weaken the relation with cadence or ‘end-of-
sentence’. We only label the last word of repeated phrases
as a rhyme word. Figure 2 shows an example.

5. CLASSIFICATION WITH SINGLE LABELS

As a first approach we consider the trigrams independently.
A melody is represented as ‘bag-of-trigrams’. Each tri-
gram has a ground-truth label that is either ‘cadence’ or
‘no cadence’, as depicted in Figure 1 for pitch-trigrams’

We employ a Random Forest classifier [2] as imple-
mented in the Python library scikit-learn [13]. This classi-
fier combines n decision trees (predictors) that are trained
on random samples extracted from the data (with replace-
ment). The final classification is a majority vote of the pre-
dictions of the individual trees. This procedure has proven
to perform more robustly than a single decision tree and
is less prone to over-fitting the data. Given the relatively
large size of our data set, we set the number of predictors
to 50 instead of the default 10. For the other parameters,
we keep the default values.

The evaluation is performed by 10-fold cross-validation.
One non-trivial aspect of our procedure is that we construct
the folds at the level of the songs, rather than at that of indi-
vidual trigrams. Since it is quite common for folk songs to
have phrases that are literally repeated, folding at the level
of trigrams could result in identical trigrams in the train
and test subsets, which could lead to an overfitted classi-
fier. By ensuring that all trigrams from a song are either in
the test or in the train subset, we expect better generaliza-
tion. This procedure is applied throughout this paper.

The results are shown in Table 1. For both classes aver-
ages of the values for the precision, the recall and the F1-
measure over the folds are included, as well as the standard
deviation of the F1 measure, which indicates the variation
over the folds. The number of items in both classes (sup-

Class pr rec F1 σF1
support

note-trigrams
cadence 0.89 0.72 0.80 0.01 23,925
nocadence 0.96 0.99 0.98 0.00 183,780
pitch-trigrams
cadence 0.89 0.71 0.79 0.01 23,838
nocadence 0.95 0.98 0.97 0.01 130,992

Table 2. Results for classification with label trigrams.

port) shows that cadences are clearly a minority class.
We observe that the note-trigrams lead to slightly better

cadence-detection as compared to pitch-trigrams. Appar-
ently, the repetition of pitches does not harm the discrim-
inability. Furthermore, there is an unbalance between the
precision and the recall of the cadence-trigrams. The pre-
cision is rather high, while the recall is moderate.

6. CLASSIFICATION WITH LABEL TRIGRAMS

When our cadence detection system predicts the class of a
new trigram, it is oblivious of the decisions made for earlier
predictions. One particularly negative effect of this near-
sightedness is that the classifier frequently predicts two (or
even more) cadences in a row, which, given our our train-
ing material, is extremely unlikely. We attempt to circum-
vent this ‘defect’ using a method, developed by [20] that
predicts trigrams of class labels instead of single, binary
labels. Figure 4 depicts the standard single class classi-
fication setting, where each trigram is predicted indepen-
dent of all other predictions. In the label trigram setting
(see Figure 5), the original class labels are replaced with
the class label of the previous trigram, the class label of
the current trigram and the label of the next trigram. The
learning problem is transformed into a sequential learn-
ing problem with two stages. In the first stage we predict
for each trigram a label trigram y(t) = (y1, y2, y3) where
y ∈ {0, 1}. To arrive at the final single class predictions
(i.e. is it a cadence or not), in the second stage we take
the majority vote over the predictions of the focus trigram
and those of its immediate left and right neighboring tri-
grams. Take t4 in Figure 5 as an example. It predicts that
the current trigram is a cadence. The next trigram and the
previous trigram also predict it to be a cadence and based
on this majority vote, the final prediction is that t4 is a
cadence. Should t3 and t5 both have predicted the zero
class (e.g. y(t3) = (0, 0, 0) and y(t5) = (0, 1, 0)), the ma-
jority vote would be 0. The advantage of this method is
that given the negligible number of neighboring cadences
in our training data, we can virtually rule out the possibility
to erroneously predict two or more cadences in a row.

Table 2 shows the performance of the label-trigram clas-
sifier for both classes and both for pitch and note trigrams.
The values show an important improvement for the preci-
sion of cadence-detection and a slight improvement of the
recall. The lower number of false positives is what we ex-
pected by observing the classification of adjacent trigrams
as ‘cadence’ in the case of the single-label classifier.
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0 0 0 1 0

t1 t2 t3 t4 t5

Figure 4. Short example sequence of trigrams. Each tri-
gram ti has a binary label indicating whether the trigram is
cadential (1) or non-cadential (0).

t1 t2 t3 t4 t5

00 0 00 0 00 1 10 0 01 0

Figure 5. Label-trigrams for the same sequence as in Fig-
ure 1, where t4 has label 1 and the other trigrams have label
0. Each trigram ti gets a compound label consisting of its
own label and the labels of the direct neighboring trigrams.

7. ABLATION STUDY

To study the importance of the various kinds of features,
we perform an ablation study. We successively remove
each of the groups of features as defined in section 4 from
the full set and do a classification experiment with the re-
maining features. Subsequently, we perform a similar se-
ries of classification experiments, but now with each single
group of features. The first series shows the importance
of the individual groups of features, and the second series
shows the predictive power for each of the groups. Because
the groups are assembled according to distinct properties
of music and text, this will give insight in the importance
of various musical and textual parameters for cadence de-
tection. We use the label-trigram classifier with the note-
trigrams, which performed best on the full set.

We expect occurrence of rests to be a very strong predic-
tor, because according to our definition a ‘rest’ always fol-
lows after the final cadence, and we know that in our cor-
pus rests almost exclusively occur between phrases. There-
fore, we also take the three features that indicate whether a
rest occurs in the trigram or directly after it, as a separate
group. The performance when leaving these three features
out will show whether they are crucial for cadence detec-
tion.

Table 3 shows the evaluation measures for each of the
feature subsets. Precision, recall and F1 for class ‘cadence’
are reported. Again, the values are averaged over 10 folds.

We see that none of the single groups of features is cru-
cial for the performance that was achieved with the com-
plete set of features. The basic melodic features (Fpitch,
Fcontour, and Frhyhmic) all perform very bad on their own,
showing low to extremely low recall values. The contour
features even do not contribute at all. Only the rhythmic
features yield some performance. The features on rest are

Subset pr rec F1 σF1

Fall 0.89 0.72 0.80 0.01
Fall \ Fpitch 0.88 0.72 0.79 0.01
Fpitch 0.84 0.04 0.08 0.01
Fall \ Fcontour 0.88 0.73 0.80 0.01
Fcontour 0.00 0.00 0.00 0.00
Fall \ Frhythmic 0.79 0.49 0.60 0.01
Frhythmic 0.90 0.35 0.50 0.01
Fall \ Ftextual 0.85 0.58 0.69 0.02
Ftextual 0.70 0.40 0.51 0.01
Fall \ Fnarmour 0.83 0.55 0.66 0.01
Fnarmour 0.95 0.30 0.45 0.01
Fall \ Fcontextual 0.87 0.67 0.76 0.01
Fcontextual 0.71 0.45 0.56 0.01
Fall \ Frest 0.87 0.67 0.76 0.01
Frest 0.97 0.27 0.43 0.02

Table 3. Results for various feature subsets for class ‘ca-
dence’.

included in the set of rhythmic features. The classifica-
tion with just the features on rest, Frest shows very high
precision and low recall. Still, the recall with all rhythmic
features is higher than only using the rest-features. Since
rests are so tightly related to cadences in our corpus, the
high precision for Frest is what we expected. If we exclude
the rest-features, the precision stays at the same level as for
the entire feature set and the recall drops with 0.06, which
shows that only a minority of the cadences exclusively re-
lies on rest-features to be detected.

The set of features that is based on the conditions of clo-
sure as formulated by Narmour shows high precision and
low recall. Especially the high precision is interesting, be-
cause this confirms Narmour’s conditions of closure. Ap-
parently, most patterns that are classified as cadence based
on this subset of features, are cadences indeed. Still, the
low recall indicates that there are many cadences that are
left undetected. One cause could be that the set of condi-
tions as stated by Narmour is not complete, another cause
could be the discrepancy between our features and Nar-
mour’s conditions. Further investigation would be neces-
sary to shed light on this. Removing the Narmour-based
features from the full feature set does not have a big im-
pact. The other features have enough predictive power.

The textual features on their own show moderate pre-
cision and very moderate recall. They are able to discern
certain kinds of cadences to a certain extent, while miss-
ing most of the other cadences. The drop of 0.14 in recall
for Fall \ Ftextual as compared to the full set shows that
text features are crucial for a considerable number of ca-
dences to be detected. The same applies to a somewhat
lesser extent to contextual features. Removing the contex-
tual features from the full set causes a drop of 0.05 in the
recall, which is considerable but not extreme. It appears
that the group of cadence trigrams for which the contex-
tual features are crucial is not very big.
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8. CONCLUSION AND FUTURE WORK

In this paper we developed a system to detect cadences in
Western folk songs. The system makes use of a Random
Forest Classifier that on the basis of a number of hand-
crafted features (both musical and textual) is able to accu-
rately locate cadences in running melodies. In a follow-
up experiment we employ a method, originally developed
for textual sequences, that predicts label-trigrams instead
of the binary labels ‘cadence’ or ‘non-cadence’. We show
that incorporating the predictions of neighboring instances
into the final prediction, has a strong positive effect on pre-
cision without a loss in recall.

In the ablation study we found that all groups of fea-
tures, except for the contour features, contribute to the over-
all classification, while none of the groups is crucial for
the majority of the cadences to be detected. This indicates
that cadence detection is a multi-dimensional problem for
which various properties of melody and text are necessary.

The current results give rise to various follow-up stud-
ies. A deeper study to the kinds of errors of our system
will lead to improved features and increased knowledge
about cadences. Those that were detected exclusively by
textual features form a particular interesting case, possibly
giving rise to new melodic features. Next, n-grams other
than trigrams as well as skip-grams [7] could be used, we
will compare the performance of our method with existing
symbolic segmentation algorithms, and we want to make
use of other features of the text such as correspondence
between syntactic units in the text and melodic units in the
melody.
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